Solar Photovoltaic Technology In Brazil

Authors

  • Juliana de Almeida Yanaguizawa LUCENA Federal Institute of Pernambuco, Brazil
  • Victor Gabriel Bezerra de HOLANDA Federal Institute of Pernambuco, Brazil

DOI:

https://doi.org/10.38142/ijesss.v3i1.173

Keywords:

Solar Plants, Renewable Energy, Solar Cells, Sustainability, Clean Energy

Abstract

In recent years, the use of solar systems has been increasing worldwide in an accelerated rate, with perspective of staying among the main sources of renewable energy for the following decades, along with wind power. The photovoltaic energy in Brazil currently represents 4,5 GW (2,5% of the national electric matrix).  Solar thermal energy is called when solar radiation is used to transfer energy to a medium, usually water or air. It is a renewable, sustainable and environmentally friendly source of energy. The number of solar thermal energy applications is very extensive when considering all temperature levels and energy demands. In this context, the present work shows the evolution of solar photovoltaic energy in Brazil, bringing a discussion regarding to solar power characteristics, working principles and different technologies of solar cells, as well as aspects of operation and maintenance of the photovoltaic panels. Investments in research for the development of new technologies and valuation of existing ones for solar energy should also be prioritized, as well as for better planning and sustainable use of photovoltaic energy, given the advantages for the economy, society and the environment provided by this renewable and clean source.

Downloads

Download data is not yet available.

References

Ahmad, T., Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Reports, 6, 1973-1991, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2020.07.020.

Aneel (2021). ANEEL Generation Information System. https://www.aneel.gov.br/siga.

ABSOLAR. (2021) Panorama da solar fotovoltaica no Brasil e no mundo. https://www.absolar.org.br/mercado/infografico/

Cheng, L., Abraham, J., Hausfather, Z., Trenberth, K.E. (2019). How fast are the oceans warming?, Science, 363, 128-129. https://doi.org/10.1126/science.aav7619

Choudhary, P., Srivastava, R. K. (2019). Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities, Journal of Cleaner Production, 227, 589-612, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.04.107.

EPE (2020). Balanço Energético Nacional 2020. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-479/topico-528/BEN2020_sp.pdf

Fahrenbruch, A. L., Bube, R. H. (1983). Fundamentals of solar Cells, Elsevier.

Ferreira, A., Kunh, S. S., Fagnani, K. C., Souza, T. A., Tonezer, C., Santos, G. R., Araújo, C.H. C. (2018). Economic overview of the use and production of photovoltaic solar energy in Brazil, Renewable and Sustainable Energy Reviews, 81, 181-191, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.06.102.

FGV (Fundação Getúlio Vargas). (2020). Dados Matriz Energética, https://fgvenergia.fgv.br/dados-matriz-energetica

Gatti, T., Lamberti, F., Mazzaro, R., Kriegel, I., Schlettwein, D., Enrichi, F., Lago, N., Di Maria, E., Meneghesso, G., Vomiero, A., Gross, S. (2021). Opportunities from Doping of Non-Critical Metal Oxides in Last Generation Light-Conversion Devices, Advanced energy Materials, 11, 2101041, https://doi.org/10.1002/aenm.202101041

Global Solar Atlas. (2019). Solar Resource Map. https://globalsolaratlas.info/download.

IRENA. (2019). Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi.

Li, J., Chen, S., Wu, Y., Wang, Q., Liu, X., Qi, L., Lu, X., Gao, L. (2021). How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China, Renewable and Sustainable Energy Reviews, 137, 110626, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110626.

Luna, M. A. R., Cunha, F. B. F., Mousinho, M. C. A. M., Torres, E. A. (2019). Solar Photovoltaic Distributed Generation in Brazil: The Case of Resolution 482/2012, Energy Procedia, 159, 484-490, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2018.12.036.

Martins, F. R., Pereira, E. B., Silva, S. A. B., Abreu, S. L., Collec, S. (2008). Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy, 36, 8, 2853-2864.

Palmer, T. (2014). Record-breaking winters and global climate change. Science, 344, 803-804.

Parida, B., Iniyan, S., Goic, R. (2011). A review of solar photovoltaic technologies, Renewable and Sustainable Energy Reviews, 15, 3, 1625-1636, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2010.11.032.

Pereira, E. B.; Martins, F.R.? Gonçalves, A.R.; Costa, R.S.; Lima, F.J.L.; Rüther, R.; Abreu, S.L.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G. (2017). Solar Energy Brazilian Atlas. http://doi.org/10.34024/978851700089

Pipe, J. (2016). Solar energy. São Paulo: Editora Callis.

Polman, A., Knight, M., Garnett, E. C., Ehrler, B., Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges, Science, 352, 6283, https:// https://www.science.org/doi/10.1126/science.aad4424

Portal Solar (2021). Energia solar no Brasil. https://www.portalsolar.com.br/energia-solar-no-brasil.html

Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K. J., Wilberforce, T., A.G. Olabi. (2021). Environmental impacts of solar energy systems: A review, Science of The Total Environment, 754,141989, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.141989.

Sengupta, M., Habte, A., Wilbert, S., Gueymard, C., Remund, J. (2021). Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3th Edition. United States. https://dx.doi.org/10.2172/1778700.

Seetharaman, S. P. J., Moorthy, K., Patwa, N., Saravanan, Gupta. Y. (2019). Breaking barriers in deployment of renewable energy, Heliyon, 5, https://doi.org/10.1016/j.heliyon.2019.e01166

Sovacool, B. K. and Watts, C. (2009). Going Completely Renewable: Is It Possible (Let Alone Desirable)? The Electricity Journal, 22, 95-111.

Rao, S., Klimont, Z., Smith, S.J., Dingenen, R.V., Dentener, F., Bouwnan, L. et al. (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environment Change, 42, 346-358.

Wessier, D. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32, (1543-1559).

Wizelius, T. (2015). Developing Wind Power Projects: Theory and Practice, 1.ed. London, UK: Routledge. ISBN: 9781317705383.

Yousef, B. A. A., Hachicha, A. A., Rodriguez, I., Abdelkareem, M. A., Inyaat, A. (2021). Perspective on integration of concentrated solar power plants, International Journal of Low-Carbon Technologies, 16, 3, 1098–1125, https://doi.org/10.1093/ijlct/ctab034

Downloads

Published

2022-03-31